Retractable Pool Cover

Concept Generation and Selection

Abdulhadi Alkhaldi, Zachary Keller, Cody Maurice, Bradley Miller, and Patrick Weber

10/21/15

Overview

Introduction

Functional Diagram

Criteria

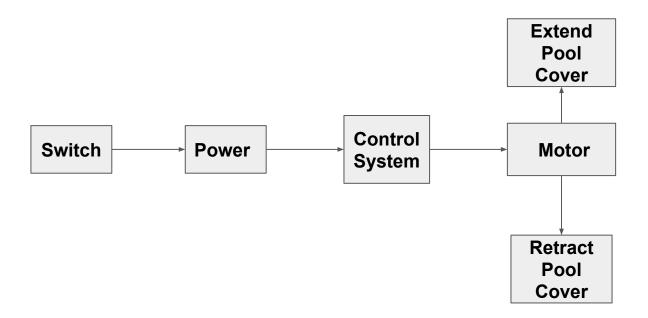
Relative Weights of Criteria

Concept Generation

Decision Matrix

Updated Project Plan

Conclusions


Introduction

- Our client, Mr. Brian Herzog, is a resident of Flagstaff, AZ and the retired CEO of Frontline Energy Services

- Mr. Herzog would like to bring an affordable and retractable pool cover to the market

- There is not an affordable and comparable product on the market today

Functional Diagram

Criteria

Motor	Design	Control System	Materials
 Power output Safety Price Lifespan Manufacturability 	VolumeEase of retractionMaintainabilityManufacturability	Response timeEase of use	PriceWaterresistanceYield strength

Relative Weights of Criteria: Motor

Criteria	Power Output	Safety	Price	Lifespan	Manufacturability
Power Output	1	0.898	4.22	3.24	2.866
Safety	4.066	1	6.6	5.4	3.6
Price	1.168	0.174	1	2.5	1.106
Lifespan	1.212	0.204	0.772	1	3.566
Manufacturability	0.838	0.312	2.066	1.108	1

Relative Weights of Criteria: Motor

Criteria	Power Output	Safety	Price	Lifespan	Manufacturability
Power Output	0.227	0.2586	0.2848	0.2238	0.2542
Safety	0.4782	0.338	0.4592 0.4054		0.3094
Price	0.0982	0.074	0.0708	0.2072	0.081
Lifespan	0.1074	0.0914	0.0484	0.0818	0.259
Manufacturability	0.1578	0.145	0.1374	0.0816	0.097

Relative Weights of Criteria

Motor					
Criteria	Weight				
Power Output	0.245				
Safety	0.4118				
Price	0.1015				
Lifespan	0.1128				
Manufacturability	0.1289				

Design					
Criteria	Weight				
Volume	0.3662				
Ease of Retraction	0.2783				
Maintainability	0.2056				
Manufacturability	0.1499				

Relative Weights of Criteria

Control System					
Criteria Weight					
Response Time	0.5915				
Ease of Use	0.4085				

Materials						
Criteria	Weight					
Price	0.2165					
Water Resistance	0.2461					
Yield Strength	0.5374					

Concept Generation: Motor

Electric

Hydraulic

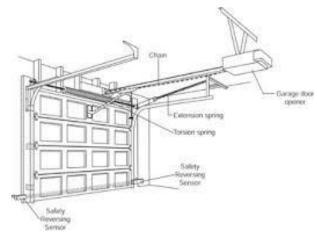
Decision Matrix: Motor

			Electric	Hydraulic		
Criteria	Weight	Scale	Weighted Scale	Scale	Weighted Scale	
Power output	0.245	10	2.45	10	2.45	
Safety	0.4118	4	1.647	8	1.647	
Price	0.1015	7	0.711	6	0.609	
Lifespan	0.1128	7	0.79	7	0.79	
Manufacturability	0.1289	8	1.031	8	1.031	
Sum	1.0	36	6.629	39	8.174	

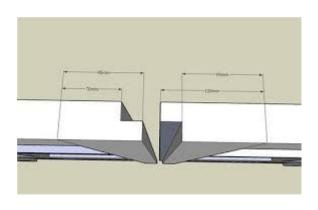
Concept Generation: Design

Stacking

base ball highway. files. wordpress. com


Rolling

megastoragesheds.com


Concept Generation: Design, Continued

Garage Door

fixitclub.com

Meet in Middle

getwoodworking.com

Decision Matrix: Design

		Stacking		Rolling		Garage Door		Meet in Middle	
Criteria	Weight	Scale	Weighted Scale	Scale	Weighted Scale	Scale	Weighted Scale	Scale	Weighted Scale
Volume	0.3662	7	2.563	7	2.563	9	3.296	4	1.465
Ease of retraction	0.2783	7	1.948	7	1.948	5	1.392	8	2.226
Maintainability	0.2056	9	1.85	8	1.645	7	1.439	6	1.234
Manufacturability	0.1499	9	1.349	7	1.049	6	0.899	4	0.6
Sum	1.0	32	7.71	29	7.205	27	7.026	22	5.525

Concept Generation: Control System

Key Start

Remote Start

haywardflowcontrol.com

Button Start

electrosome.com

Lever Start

actusink.com

Decision Matrix: Control System

		Key Start		Remote Start		Button/Switch		Lever Start	
Criteria	Weight	Scale	Weighted Scale	Scale	Weighted Scale	Scale	Weighted Scale	Scale	Weighted Scale
Response time	0.5915	10	5.915	9	5.234	9	5.234	9	5.234
Ease of use	0.4085	9	3.677	10	4.085	10	4.085	8	3.268
Sum	1.0	19	9.592	19	9.319	19	9.319	17	8.502

Concept Generation: Materials

Aluminum

myaluminumsupply.com

Stainless Steel

quickshipmetals.com

Brass

hagstoz.com

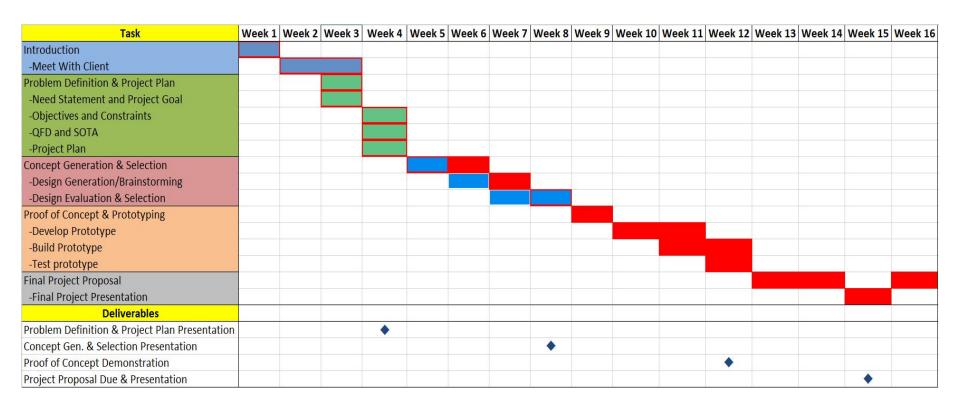
Concept Generation: Materials, Continued

Polymer

polyzone.com

Fiberglass

acpsales.com


Decision Matrix: Materials

		Alum	ninum	Stainless Steel		
Criteria	Weight	Scale	Weighted Scale	Scale	Weighted Scale	
Price	0.217	8	1.732	4	0.866	
Water Resistance	0.246	8	1.969	9	2.215	
Yield Strength	0.537	9	4.837	9	4.837	
Sum	1.0	25	8.538	22	7.918	

Decision Matrix: Materials, Continued

		В	irass	Polymer		Fibe	erglass
Criteria	Weight	Scale	Weighted Scale	Scale	Weighted Scale	Scale	Weighted Scale
Price	0.2165	6	1.299	4	0.866	5	1.083
Water Resistance	0.2461	7	1.723	9	2.215	10	2.461
Yield Strength	0.5374	8	4.299	6	3.224	10	5.374
Sum	1.0	21	7.321	19	6.305	25	8.918

Updated Project Plan

Conclusions

- The components of the retractable cover were established
- The criteria for each component was established and weighted
- Different concepts for each component were generated
- These concepts were then combined with the weighted criteria in a decision matrix to choose the best choice

Conclusions

- The best choice for each design concept
 - Motor: Hydraulic
 - Design: Stacking
 - Control System: Key Start
 - Material: Fiberglass
- The project plan was updated